Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0293971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37930992

RESUMO

Djungarian hamsters are small rodents that show pronounced physiological acclimations in response to changes in photoperiod, and unfavorable environmental conditions such as reduced food availability and low external temperature. These include substantial adjustments, such as severe body weight loss and the use of daily torpor. Torpor is a state of decreased physiological activity in eutherms, usually marked by low metabolic rate and a reduced body temperature. In this study, we investigated the effects of photoperiodic acclimation and food deprivation on systemic iron metabolism in Djungarian hamsters. Our study illustrates the association between liver iron levels and the incidence of torpor expression during the course of the experiment. Moreover, we show that both, acclimation to short photoperiods and long-term food restriction, associated with iron sequestration in the liver. This effect was accompanied with hypoferremia and mild reduction in the expression of principal iron-hormone, hepcidin. In addition to iron, the levels of manganese, selenium, and zinc were increased in the liver of hamsters under food restriction. These findings may be important factors for regulating physiological processes in hamsters, since iron and other trace elements are essential for many metabolic and physiological processes.


Assuntos
Hipotermia , Torpor , Cricetinae , Animais , Phodopus/fisiologia , Estações do Ano , Torpor/fisiologia , Fotoperíodo , Jejum
2.
Adv Sci (Weinh) ; 10(28): e2302623, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544912

RESUMO

Electrochemical nitrate reduction to ammonia powered by renewable electricity is not only a promising alternative to the established energy-intense and non-ecofriendly Haber-Bosch reaction for ammonia generation but also a future contributor to the ever-more important denitrification schemes. Nevertheless, this reaction is still impeded by the lack of understanding for the underlying reaction mechanism on the molecular scale which is necessary for the rational design of active, selective, and stable electrocatalysts. Herein, a novel single-site bismuth catalyst (Bi-N-C) for nitrate electroreduction is reported to produce ammonia with maximum Faradaic efficiency of 88.7% and at a high rate of 1.38 mg h-1 mgcat -1 at -0.35 V versus reversible hydrogen electrode (RHE). The active center (described as BiN2 C2 ) is uncovered by detailed structural analysis. Coupled density functional theory calculations are applied to analyze the reaction mechanism and potential rate-limiting steps for nitrate reduction based on the BiN2 C2 model. The findings highlight the importance of model catalysts to utilize the potential of nitrate reduction as a new-generation nitrogen-management technology based on the construction of efficient active sites.

3.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240294

RESUMO

Mutations in the HFE/Hfe gene cause Hereditary Hemochromatosis (HH), a highly prevalent genetic disorder characterized by elevated iron deposition in multiple tissues. HFE acts in hepatocytes to control hepcidin expression, whereas HFE actions in myeloid cells are required for cell-autonomous and systemic iron regulation in aged mice. To address the role of HFE specifically in liver-resident macrophages, we generated mice with a selective Hfe deficiency in Kupffer cells (HfeClec4fCre). The analysis of the major iron parameters in this novel HfeClec4fCre mouse model led us to the conclusion that HFE actions in Kupffer cells are largely dispensable for cellular, hepatic and systemic iron homeostasis.


Assuntos
Hemocromatose , Células de Kupffer , Camundongos , Animais , Células de Kupffer/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Proteínas de Membrana/metabolismo , Fígado/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Hemocromatose/genética , Hemocromatose/metabolismo , Ferro/metabolismo , Camundongos Knockout
4.
ACS Appl Mater Interfaces ; 15(15): 18889-18897, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37014708

RESUMO

CdSe quantum dots (QDs) combined with [FeFe] hydrogenase mimics as molecular catalytic reaction centers based on earth-abundant elements have demonstrated promising activity for photocatalytic hydrogen generation. Direct linking of the [FeFe] hydrogenase mimics to the QD surface is expected to establish a close contact between the [FeFe] hydrogenase mimics and the light-harvesting QDs, supporting the transfer and accumulation of several electrons needed to drive hydrogen evolution. In this work, we report on the functionalization of QDs immobilized in a thin-film architecture on a substrate with [FeFe] hydrogenase mimics by covalent linking via carboxylate groups as the anchoring functionality. The functionalization was monitored via UV/vis, photoluminescence, IR, and X-ray photoelectron spectroscopy and quantified via micro-X-ray fluorescence spectrometry. The activity of the functionalized thin film was demonstrated, and turn-over numbers in the range of 360-580 (short linkers) and 130-160 (long linkers) were achieved. This work presents a proof-of-concept study, showing the potential of thin-film architectures of immobilized QDs as a platform for light-driven hydrogen evolution without the need for intricate surface modifications to ensure colloidal stability in aqueous environments.

5.
Angew Chem Int Ed Engl ; 62(22): e202217196, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36876900

RESUMO

Heterogeneous light-driven catalysis is a cornerstone of sustainable energy conversion. Most catalytic studies focus on bulk analyses of the hydrogen and oxygen evolved, which impede the correlation of matrix heterogeneities, molecular features, and bulk reactivity. Here, we report studies of a heterogenized catalyst/photosensitizer system using a polyoxometalate water oxidation catalyst and a model, molecular photosensitizer that were co-immobilized within a nanoporous block copolymer membrane. Via operando scanning electrochemical microscopy (SECM), light-induced oxygen evolution was determined using sodium peroxodisulfate (Na2 S2 O8 ) as sacrificial electron acceptor. Ex situ element analyses provided spatially resolved information on the local concentration and distribution of the molecular components. Infrared attenuated total reflection (IR-ATR) studies of the modified membranes showed no degradation of the water oxidation catalyst under the reported light-driven conditions.

6.
Chemistry ; 28(51): e202200766, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35719124

RESUMO

The synthesis and detailed characterization of a new Ru polypyridine complex containing a heteroditopic bridging ligand with previously unexplored metal-metal distances is presented. Due to the twisted geometry of the novel ligand, the resultant division of the ligand in two distinct subunits leads to steady state as well as excited state properties of the corresponding mononuclear Ru(II) polypyridine complex resembling those of prototype [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine). The localization of the initially optically excited and the nature of the long-lived excited states on the Ru-facing ligand spheres is evaluated by resonance Raman and fs-TA spectroscopy, respectively, and supported by DFT and TDDFT calculations. Coordination of a second metal (Zn or Rh) to the available bis-pyrimidyl-like coordination sphere strongly influences the frontier orbitals, apparent by, for example, luminescence quenching. Thus, the new bridging ligand motif offers electronic properties, which can be adjusted by the nature of the second metal center. Using the heterodinuclear Ru-Rh complex, visible light-driven reduction of NAD+ to NADH was achieved, highlighting the potential of this system for photocatalytic applications.


Assuntos
Rutênio , Teoria da Densidade Funcional , Ligantes , Luminescência , Fotossíntese , Rutênio/química
7.
Anal Bioanal Chem ; 414(15): 4519-4529, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35552471

RESUMO

Placental elemental composition can serve as an indicator for neonatal health. Medical studies aiming at revealing such cause-and-effect relationships or studies monitoring potential environmental influences consist of large sample series to ensure statistically sufficient data. Several analytical techniques have been used to study trace metals in human placenta. However, most techniques require provision of clear liquid sample solutions and therefore time- and reagent-consuming total digestion of biological tissue is necessary. In total reflection X-ray fluorescence spectrometry (TXRF)-a straightforward multielement analytical technique-in contrast suspensions of minute sample amounts can be analyzed directly. Therefore, herein we report on a valid method to prepare homogenous sample suspensions for sustainable and fast TXRF analysis of large sample series. The optimized method requires only 10 mg of powdered placental tissue and 1 mL nitric acid. Suspensions are readily prepared within 30 min and the found mass fractions of major, minor, and trace elements are in good agreement in comparison to analysis of digests. In addition, possible effects on fixation time and the exact sampling location, i.e., maternal vs. fetal side of the placenta, were studied applying this method. Thereby, significant differences for fetal placenta tissue compared to maternal or intermediate tissue were observed revealing accumulation of trace elements in the fetal side of the placenta. Furthermore, considerable depletion of up to 60% mass fraction with longer fixation duration occurred in particular in fetal placenta tissue. These findings help to understand the large ranges of mass fraction of elements in placenta reported in the literature and at the same time indicate the necessity for more systematic investigation of non-homogenous elements distributed in placenta taking sampling and stabilization methods into account.


Assuntos
Oligoelementos , Feminino , Humanos , Recém-Nascido , Placenta/química , Gravidez , Manejo de Espécimes , Espectrometria por Raios X/métodos , Suspensões , Oligoelementos/análise
8.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670486

RESUMO

Mercury detection in humic matter-containing natural waters is often associated with environmental harmful substances for sample preparation. Herein we report an approach based on photoactive titanium dioxide films with embedded gold nanoparticles (AuNP@TiO2 dipstick) for chemical-free sample preparation and mercury preconcentration. For this purpose, AuNPs are immobilized onto a silicon wafer and further covered with a thin photoactive titanium dioxide layer. The AuNPs allow the preconcentration of Hg traces via amalgamation, while TiO2 acts as a protective layer and, at the same time, as a photocatalyst for UV-C radiation-based sample pretreatment. Humic matter, often present in natural waters, forms stabile complexes with Hg and so hinders its preconcentration prior to detection, causing a minor recovery. This problem is solved here by irradiation during Hg preconcentration onto the photoactive dipstick, resulting in a limit of detection as low as 0.137 ng L-1 using atomic fluorescence spectrometry (AFS). A 5 min preconcentration step is sufficient to obtain successful recovery of Hg traces from waters with up to 10 mg L-1 DOC. The feasibility of the approach was demonstrated by the determination of Hg traces in Danube river water. The results show no significant differences in comparison with standard cold vapor-atomic fluorescence spectrometry (CV-AFS) measurements of the same sample. Hence, this new AuNP@TiO2 dipstick provides a single-step sample preparation and preconcentration approach that combines sustainability with high analytical sensitivity and accuracy.

10.
Antioxidants (Basel) ; 9(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756399

RESUMO

Gold nanoparticles (AuNPs) are considered nontoxic upon acute exposure, at least when they are equal or above 5 nm size. However, the safeguard mechanisms contributing to maintain cell viability are scarcely explored so far. Here, we investigated the cyto-protective role of Glyoxalase 1 (Glo1), a key enzyme involved in the control of deleterious dicarbonyl stress, in two human cell types of the respiratory tract, after an acute exposure to AuNPs with a main size of 5 nm. We found that the redox sensitive Nrf-2-mediated up-regulation of Glo1 was crucial to protect cells from AuNPs-induced toxicity. However, cells challenged with a pro-inflammatory/pro-oxidative insult become susceptible to the pro-apoptotic effect of AuNPs. Notably, the surviving cells undergo epigenetic changes associated with the onset of a partial epithelial to mesenchymal transition (EMT) process (metastable phenotype), driven by the increase in dicarbonyl stress, consequent to Glo1 inactivation. As a physiological respiratory epithelium is required for the normal respiratory function, the knowledge of the protective mechanisms avoiding or (when challenged) promoting its modification/damage might provide insight into the genesis, and, most importantly, prevention of potential health effects that might occur in subjects exposed to AuNPs, through targeted surveillance programs, at least under specific influencing factors.

11.
Anal Bioanal Chem ; 412(24): 6419-6429, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32337622

RESUMO

Trace elements are essential for life and their concentration in cells and tissues must be tightly maintained and controlled to avoid pathological conditions. Established methods to measure the concentration of trace elements in biological matrices often provide only single element information, are time-consuming, and require special sample preparation. Therefore, the development of straightforward and rapid analytical methods for enhanced, multi-trace element determination in biological samples is an important and raising field of trace element analysis. Herein, we report on the development and validation of a reliable method based on total reflection X-ray fluorescence (TXRF) analysis to precisely quantify iron and other trace metals in a variety of biological samples, such as the liver, parenchymal and non-parenchymal liver cells, and bone marrow-derived macrophages. We show that TXRF allows fast and simple one-point calibration by addition of an internal standard and has the potential of multi-element analysis in minute sample amounts. The method was validated for iron by recovery experiments in homogenates in a wide concentration range from 1 to 1600 µg/L applying well-established graphite furnace atomic absorption spectrometry (GFAAS) as a reference method. The recovery rate of 99.93 ± 0.14% reveals the absence of systematic errors. Furthermore, the standard reference material "bovine liver" (SRM 1577c, NIST) was investigated in order to validate the method for further biometals. Quantitative recoveries (92-106%) of copper, iron, zinc, and manganese prove the suitability of the developed method. The limits of detection for the minute sample amounts are in the low picogram range. Graphical abstract.


Assuntos
Ferro/análise , Fígado/química , Macrófagos/química , Espectrometria por Raios X/métodos , Oligoelementos/análise , Animais , Bovinos , Células Cultivadas , Limite de Detecção , Camundongos
12.
Toxicol Ind Health ; 35(6): 403-409, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31131740

RESUMO

The technologically interesting properties of palladium nanoparticles (Pd-NPs) allowed their widespread industrial application, although concerns emerged on increasing general and occupational levels of exposure. In this context, to assess the toxicological behavior of Pd-NPs, and particularly their endocrine disruptive potential, has become a public health priority. Therefore, we evaluated Pd-NP impact on the female endocrine reproductive system of Wistar rats sub-chronically treated for 90 days with increasing doses of this xenobiotic (0.12, 1.2, and 12 µg/kg, administered at days 1, 30, and 60 for cumulative doses of 0.36, 3.6, and 36 µg/kg) via the intravenous route. In this regard, we investigated potential alterations in different sex hormone, for example, estradiol, follicle-stimulating hormone (FSH), luteinizing hormone, progesterone, and testosterone, serum concentrations. All treated groups showed significantly greater levels of FSH compared to controls, suggesting a possible impact of Pd-NPs on the regulatory system that controls the normal physiology of female reproductive function. Although relevant, since obtained under sub-chronic, low-dose conditions of exposure resembling those encountered in real-world scenarios, the present results are preliminary and require confirmation as well as identification of the possible underlining molecular mechanisms. From a public and occupational health perspective, implications for the reproductive health of exposed subjects and the next generations of women exposed during their childbearing age or pregnancy should be elucidated. This information is essential to elaborate adequate preventive strategies for assessing and controlling possible Pd-NPs adverse effects on the endocrine system.


Assuntos
Hormônio Foliculoestimulante/sangue , Genitália/efeitos dos fármacos , Hormônio Luteinizante/sangue , Nanopartículas Metálicas/análise , Paládio/sangue , Animais , Disruptores Endócrinos/farmacologia , Feminino , Sistema Hipotálamo-Hipofisário , Nanopartículas Metálicas/toxicidade , Paládio/toxicidade , Dados Preliminares , Distribuição Aleatória , Ratos , Ratos Wistar
13.
Anal Bioanal Chem ; 411(19): 4551-4558, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30810792

RESUMO

Recently, graphite furnace atomic absorption spectrometry (GFAAS) has been suggested as a tool for detection and sizing of metal nanoparticles (NPs) providing several advantages, such as direct analysis of solid samples, high sample throughput, and robust and cost-efficient instrumentation. For this purpose, evaluation of newly introduced criteria of the absorbance signal, namely, atomization delay (tad) and atomization rate (kat), is performed. However, in real samples, NPs are typically stabilized by either engineered coating reagents or natural materials and occur in unknown concentration. Hence, systematic investigation of possible influences of nine different coating reagents and of Ag concentration on the atomization behavior of silver nanoparticles (AgNPs) was studied. Evaluation of absorption signal characteristics revealed no influence of the coating or Ag concentration on the observed parameters. Furthermore, size-dependent measurements gave reproducible size correlation independent from the coating. Validity of sizing AgNPs with the proposed approach was successfully proven by investigation of two reference materials. The found size of 74.3 ± 5.9 nm in RM 8017 (NIST) agrees very well with the certified size of 74.6 ± 3.8 nm. Moreover, AgNP size of 25.1 ± 2.5 nm found by direct slurry sampling GFAAS in matrix reference material "NanoLyse13"-chicken meat homogenate spiked with PVP-AgNPs-was in very good agreement with the reference value of 27.3 ± 5.3 nm as determined by TEM.


Assuntos
Nanopartículas Metálicas/química , Produtos Avícolas/análise , Prata/química , Espectrofotometria Atômica/métodos , Animais , Galinhas , Grafite , Tamanho da Partícula
14.
Environ Pollut ; 242(Pt B): 1119-1127, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30098538

RESUMO

The aim of this study was to evaluate the mobility of platinum (Pt) and palladium (Pd) emissions from automotive catalysts in soils and to contribute to the risk assessment of platinum group metals (PGMs) discharged from catalysts in the environment. To address this question, for the first time risk assessment code (RAC) was applied to consider the results from sequential extraction of different Pd and Pt species from soils. For this purpose, model soil samples were prepared spiking defined Pd or Pt species, respectively, at known concentrations. In order to mimic emitted species as well as possible transformation products of traffic-related Pd and Pt emissions in soils, coated and uncoated elemental nanoparticles (cPd/cPt NPs, Pd/Pt NPs) and ionic divalent metal species (Pd(II)/Pt(II)) were applied. All model samples were characterized in detail and the developed sequential extraction scheme was validated. RAC values ranged between 24 and 8% revealing medium to low risk. The order of mobility for the studied species was found to be Pt(II) > cPd NPs ¼â€¯Pd(II) > Pd NPs > Pt NPs > cPt NPs. Furthermore, migration of Pd species in gravity columns was studied confirming highest transport of cPd NPs.


Assuntos
Paládio/análise , Platina/análise , Poluentes do Solo/análise , Emissões de Veículos , Fracionamento Químico , Paládio/química , Platina/química , Solo/química , Poluentes do Solo/química
15.
Sci Total Environ ; 645: 192-204, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30021176

RESUMO

Riverbank filtration systems are important structures that ensure the cleaning of infiltrating surface water for drinking water production. In our study, we investigated the potential risk for a breakthrough of environmentally aged silver nanoparticles (Ag NP) through these systems. Additionally, we identified factors leading to the remobilization of Ag NP accumulated in surficial sediment layers in order to gain insights into remobilization mechanisms. We conducted column experiments with Ag NP in an outdoor pilot plant consisting of water-saturated sediment columns mimicking a riverbank filtration system. The NP had previously been aged in river water, soil extract, and ultrapure water, respectively. We investigated the depth-dependent breakthrough and retention of NP. In subsequent batch experiments, we studied the processes responsible for a remobilization of Ag NP retained in the upper 10 cm of the sediments, induced by ionic strength reduction, natural organic matter (NOM), and mechanical forces. We determined the amount of remobilized Ag by ICP-MS and differentiated between particulate and ionic Ag after remobilization using GFAAS. The presence of Ag-containing heteroaggregates was investigated by combining filtration with single-particle ICP-MS. Single and erratic Ag breakthrough events were mainly found in 30 cm depth and Ag NP were accumulated in the upper 20 cm of the columns. Soil-aged Ag NP showed the lowest retention of only 54%. Remobilization was induced by the reduction of ionic strength and the presence of NOM in combination with mechanical forces. The presence of calcium in the aging- as well as the remobilizing media reduced the remobilization potential. Silver NP were mainly remobilized as heteroaggregates with natural colloids, while dissolution played a minor role. Our study indicates that the breakthrough potential of Ag NP in riverbank filtration systems is generally low, but the aging in soil increases their mobility. Remobilization processes are associated to co-mobilization with natural colloids.

16.
Antioxid Redox Signal ; 29(5): 484-499, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29212341

RESUMO

AIMS: Release of large amounts of free heme into circulation, overproduction of reactive oxygen species (ROS), and activation of toll-like receptor-4-dependent responses are considered critical for the ability of heme to promote oxidative stress and to initiate proinflammatory responses, posing a serious threat to the body. A deep understanding of the consequences of heme overload on the regulation of cellular and systemic iron homeostasis is, however, still lacking. RESULTS: The effects of heme on iron metabolism were studied in primary macrophages and in mouse models of acute and chronic hemolysis. We demonstrated that hemolysis was associated with a significant depletion of intracellular iron levels and increased expression of the sole iron exporter protein, ferroportin. The pathophysiological relevance of this mechanism was further demonstrated in sickle cell anemia mice, which, despite chronic hemolysis, maintained high ferroportin expression and increased iron export. We identified a redox active iron species and superoxide as regulators for ferroportin induction by heme. Scavenging the ROS production, by use of a pharmacological antioxidant N-acetylcysteine, prevented ferroportin induction and normalized intracellular iron levels in macrophages and in experimentally induced hemolysis in mice. INNOVATION: Our data propose that scavenging ROS levels may be a novel therapeutic strategy to balance intracellular iron levels and systemic iron influx in conditions associated with heme overload. CONCLUSION: This study identifies that the pro-oxidant, and not the proinflammatory, actions of heme profoundly impact on iron homeostasis by critically regulating the expression of ferroportin and iron export in hemolytic conditions. Antioxid. Redox Signal. 29, 484-499.


Assuntos
Proteínas de Transporte de Cátions/genética , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Heme/metabolismo , Hemólise , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Camundongos , Estresse Oxidativo , Baço/metabolismo
17.
Nanomaterials (Basel) ; 9(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597846

RESUMO

Trace-level detection of mercury in waters is connected with several complications including complex multistep analysis routines, applying additional, harmful reagents increasing the risk of contamination, and the need for expensive analysis equipment. Here, we present a straightforward reagent-free approach for mercury trace determination using a novel thin film sampling stick for passive sampling based on gold nanoparticles. The nanoparticles supported on a silicon wafer and further covered with a thin layer of mesoporous silica. The mesoporous silica layer is acting as a protection layer preventing gold desorption upon exposure to water. The gold nanoparticles are created by thermal treatment of a homogenous gold layer on silicon wafer prepared by vacuum evaporation. This gold-covered substrate is subsequently covered by a layer of mesoporous silica through dip-coating. Dissolved mercury ions are extracted from a water sample, e.g., river water, by incorporation into the gold matrix in a diffusion-controlled manner. Thus, the amount of mercury accumulated during sampling depends on the mercury concentration of the water sample, the accumulation time, as well as the size of the substrate. Therefore, the experimental conditions can be chosen to fit any given mercury concentration level without loss of sensitivity. Determination of the mercury amount collected on the stick is performed after thermal desorption of mercury in the gas phase using atomic fluorescence spectrometry. Furthermore, the substrates can be re-used several tens of times without any loss of performance, and the batch-to-batch variations are minimal. Therefore, the nanogold-mesoporous silica sampling substrates allow for highly sensitive, simple, and reagent-free determination of mercury trace concentrations in waters, which should also be applicable for on-site analysis. Successful validation of the method was shown by measurement of mercury concentration in the certified reference material ORMS-5, a river water.

18.
ACS Nano ; 11(8): 7967-7973, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28738676

RESUMO

Single-distilled water encapsulated in graphene pockets has been studied by aberration-corrected high-resolution transmission electron microscopy and electron energy loss spectroscopy at an acceleration voltage of 80 kV. Inside the graphene pockets, crystallization and in situ crystal growth are reported and identified as the insoluble AII phase of CaSO4 (anhydrite) in a quasi-two-dimensional system. Its formation condition is discussed with respect to the possible temperature and van der Waals pressure between the graphene sheets.

19.
Anal Chim Acta ; 965: 63-71, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28366213

RESUMO

A novel analytical method for sampling and extraction of mercury (Hg) from human urine is presented in this work. The method is based on selective accumulation and separation of Hg from fresh urine sample onto active nanogold-coated silica material by highly efficient solid-phase extraction. After thermal desorption of Hg from the extractant, detection is performed by atomic fluorescence spectrometry (AFS). The feasibility and validity of the optimized, quasi-reagent-free approach was confirmed by recovery experiments in spiked real urine (recovery rate 96.13 ± 5.34%) and by comparison of found Hg concentrations in real urine samples - originating from occupationally exposed persons - with values obtained from reference methods cold vapor - atomic absorption spectrometry (CVAAS) and cold vapor - atomic fluorescence spectrometry (CV-AFS). A very good agreement of the found values reveals the validity of the proposed approach. The limit of detection (LOD) was found to be as low as 0.004 µg Hg L-1 and a high reproducibility with a relative standard deviations ≤4.2% (n = 6) is given. Moreover, storage of the samples for up to one week at an ambient temperature of 30 °C reveals no analyte losses or contamination. In conclusion, the proposed method enables easy-to-handle on-site extraction of total Hg from human urine ensuring at the same time reagent-free sample stabilization, providing quick and safe sampling, which can be performed by untrained persons.


Assuntos
Monitoramento Ambiental , Mercúrio/urina , Extração em Fase Sólida , Ouro , Humanos , Nanopartículas Metálicas , Reprodutibilidade dos Testes , Dióxido de Silício , Espectrofotometria Atômica
20.
Sci Total Environ ; 583: 169-175, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28110882

RESUMO

Roadside dust and soil samples were collected at different sites in the area of Ulm and Munich in Germany. Road dust samples were collected in tunnels where the traffic-related dust is less influenced by atmospheric conditions. Soil samples were taken with a drill bar at varying distances to motorways, district and regional roads with different traffic densities. The soil cylinders of 30cm length were divided into four sections in order to obtain depth profiles for palladium (Pd) distribution. Determination of Pd in total digests of the samples was performed by ligand-assisted selective separation and preconcentration of Pd(II) using solid phase extraction followed by high-resolution continuum source graphite furnace spectrometry. The analytical procedure was successfully validated using the certified reference material BCR-723 Road Tunnel Dust and by recovery experiments in spiked soil samples. The average Pd concentration found in the road dusts was 311µgkg-1, the maximum Pd concentration in the topsoil layer was 193µgkg-1. Pd depth profiles reveal transportation of Pd into deeper soil layers, where even at a depth of 25 to 30cm a Pd concentration of 19µgkg-1 was found, proving the high mobility of Pd. Different factors like traffic density and age of the soils are discussed in the context of the found Pd depth profiles.


Assuntos
Poeira/análise , Monitoramento Ambiental , Paládio/análise , Poluentes do Solo/análise , Alemanha , Solo/química , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...